ICMLBDA-2024 Special Session Proposal Template Deadline for Submission (05/02/2024) through email to :pankaj@nitkkr.ac.in, er.mohitdua@nitkkr.ac.in

Important Note: Session Organizers are expected to have at least six papers accepted for their session with acceptance rate of 40% to 45%

Title	Emerging Computer Vision and Artificial Intelligence (AI) Solutions for Medical
~ •	Imaging Challenges: A Special Session Chair Track
Session	Name: Dr Shailendra Tiwari, Dr Manju Khurana
Organizer	Email ID: shailendra@thapar.edu, manju.khurana@thapar.edu
	Affiliation: CSED, TIET, Patiala
Abstract	Medical imaging represents a cornerstone of modern healthcare, offering invaluable
(max 200 words)	insights into the human body's inner workings and aiding in disease diagnosis,
	treatment planning, and monitoring. However, the interpretation of medical images
	poses substantial challenges, including variability in anatomy, pathology presentation,
	and the need for timely and accurate diagnosis. To address these challenges, there is a
	burgeoning interest in harnessing modern computer vision and emerging artificial
	intelligence (AI) solutions within the realm of medical imaging.
	This special session chair track, titled "EmergingComputer Vision andArtificial
	Intelligence Solutions for Medical Imaging Challenges," aims to delve into the
	intersection of computer vision, AI, and medical imaging. By bringing together
	researchers, clinicians, and industry experts, this session seeks to explore innovative
	methodologies, applications, and advancements in AI-driven medical imaging
	solutions.
Background and	In recent years, medical imaging has undergone a significant transformation, becoming
Justification	an indispensable tool in the diagnosis, treatment, and monitoring of various medical
(max 300 words)	conditions. From X-rays, and MRIsto CT scans and ultrasounds, medical imaging
(max 500 words)	modalities such as PET, SPECT, fMRIs etc. provide clinicians with detailed insights
	into the internal structures and functions of the human body. However, the
	interpretation of medical images remains a complex and labour-intensive task, often
	fraught with challenges such as variability in anatomical structures, subtle pathology
	detection, and the need for rapid and accurate diagnosis.
	To address these challenges and augment the capabilities of medical imaging systems,
	there has been a growing interest in harnessing advanced computer vision and artificial
	intelligence (AI) solutions. Computer vision techniques, which enable machines to
	interpret and analyze visual information, have advanced significantly with the advent
	of deep learning algorithms and convolutional neural networks (CNNs). Moreover, the
	integration of AI methodologies, including deep learning architectures, reinforcement
	learning, and generative adversarial networks (GANs), has further expanded the scope
	of possibilities in medical imaging analysis. Deep learning models, in particular, have
	shown promising results in image classification, disease diagnosis, and predictive
	modeling, leveraging large datasets to learn complex patterns and relationships within
	medical images.
	The justification for exploring advanced computer vision and AI solutions in the
	context of medical imaging challenges lies in the potential to revolutionize healthcare
	delivery and improve patient outcomes. By automating routine tasks, assisting
	clinicians in decision-making, and unlocking new insights from medical imaging data,
	AI-powered solutions have the capacity to enhance diagnostic accuracy, reduce
	interpretation time, and enable personalized treatment strategies.
	Furthermore, the integration of multi-modal imaging data, coupled with quantitative

	imaging biomarkers and radiomics analysis, holds tremendous potential for precision
	medicine and tailored patient care. These advanced techniques enable the extraction of
	quantitative features from medical images, facilitating objective assessment of disease
	severity, treatment response, and prognosis.
Topics of interest	Automated Lesion Detection and Segmentation,
	Multi-Modal Image Fusion for Improved Diagnosis,
	Deep Learning-Based Image Reconstruction,
	Quantitative Image Analysis for Disease Characterization,
	Real-Time Image Analysis in Interventional Radiology,
	Cross-Modality Image Registration and Fusion,
	Automated Anomaly Detection in Screening Programs,
	Personalized Treatment Planning Using AI,
	Explainable AI in Medical Imaging Interpretation,
	Explainable AI in Imaging Analysis for Disease Monitoring,
	Deep Learning Architectures for Medical Imaging,
	and many more
Expected	20
Numbers of	
Submissions	